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1. Introduction

Nonsupersymmetric gauge theories with an effectively supersymmetric large-N limit have

been the subject of considerable recent interest. The main examples involve the so-called

orbifold [1] and orientifold [2] field theories. The prototype of the first class of models

is a U(N)k quiver theory with bi-fundamental fermions and Zk global symmetry, whose

restriction to planar diagrams is equivalent, up to coupling rescalings, to the analogous

planar-diagram approximation of a U(kN) Super Yang-Mills (SYM) model with minimal

N = 1 supersymmetry. In the case of orientifold field theories, SU(N) gauge theory

with Dirac fermions in two-index representations (either symmetric or antisymmetric) is

claimed to be planar-equivalent to the corresponding N = 1, SU(N) gauge theory. In

both cases the statement of planar equivalence must be restricted to a particular class

of observables that can be appropriately mapped from “parent” to “daughter” theories

under the orbifold/orientifold projection. A similar correspondence must be established

among the vacua of the theories in question, a very important point given the potentially

complicated vacuum structure of these models.

A stronger version of this perturbative correspondence is the hypothesis of nonpertur-

bative planar equivalence (c.f. [3]), namely the parent and daughter theories would have

equivalent sectors to leading order in the large-N expansion but nonperturbatively in the

’t Hooft coupling, λ = g2N . If true, this stronger version of the planar equivalence would

yield interesting predictions for nonperturbative quantities in nonsupersymmetric gauge

theories, by a modified 1/N expansion whose first term is protected by supersymmetry.

A remarkable example of this program is the calculation of the chiral condensate of one-

flavour nonsupersymmetric QCD (c.f. [4]), in terms of the gaugino condensate of the N = 1

SYM parent gauge theory.
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There have been a number of arguments and counter-arguments regarding this impor-

tant question, especially in the context of the orbifold field theories [5]. In particular, a

crucial necessary condition for the strong version of planar equivalence to hold is that the

global symmetry group Zk should not be spontaneously broken in either the parent or the

daughter vacua under consideration. This restriction leaves k = 2 as the only candidate

orbifold model to realize the strong version of the planar equivalence conjecture (c.f. [6]),

although the calculation of [7] shows that, under compactification on R3×S1, the effective

three-dimensional theory that appears in the limit of small S1 radius breaks spontaneously

the crucial Z2 symmetry. On the other hand, the situation is much better for the case

of orientifold planar equivalence, where master-field arguments seem to provide a formal

proof of the correspondence (c.f. [8]).

In this paper we study the phenomenon of planar equivalence in a small-volume ex-

pansion on a three-torus (see [9] for a review). We take spacetime to be T3 × R with

the R factor representing time, and T3 a straight torus of size L. In the limit of a small

torus, there is a clean Wilsonian separation of scales between “slow” degrees of freedom,

i.e. zero modes on T3, and the non-zero modes, i.e. the “fast” variables in the language of

the Born-Oppenheimer approximation. For asymptotically free theories, this limit is ac-

cessible to weak-coupling methods, and a systematic effective action over the configuration

space of the zero modes can be constructed (c.f. [10, 11]). Our purpose is to use these

well-developed techniques to get some insight on the question of nonperturbative planar

equivalence.

The paper is organized as follows. In section 2 we consider the constraints induced by

the hypothesis of planar equivalence on the graded partition function, the natural gener-

alization of the Witten index for these theories. In section 3 we review the details of the

Born-Oppenheimer approximation for gauge theories on tori. In section 4 we apply these

results to the basic examples of orbifold/orientifold models and use them to test the claim

of planar equivalence. Finally, we offer some concluding remarks in section 5.

2. Planar equivalence and the “planar index”

The naturally protected quantity for minimally supersymmetric systems in finite volume is

the supersymmetric index, I = Tr(−1)F , [12]. In the case at hand, we shall be interested

in the related graded partition function

I(β) = Tr P (−1)F e−β H , (2.1)

where P is a projector introducing possible refinements of the index with respect to extra

global symmetries of the problem. In principle, a judicious choice of P might be necessary

to establish the planar equivalence, but we shall suppress it for the time being. Unlike the

analogous object in the parent N = 1 theory, the quantity I(β), as defined in the non-

supersymmetric daughter theories, is not independent of β/L or the dimensionless couplings

in the Lagrangian. The interesting question is whether we can establish an approximate

BPS character of I(β).
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The Witten index for a supersymmetric SU(N) theory is I = N , but the analogous

large-N scaling in the daughter theories

I(β) = O(N) (2.2)

is a much stronger condition than standard planar equivalence. Notice that perturbative

planar equivalence only requires

log I(β) = O(N) , (2.3)

since the leading O(N2) term is a sum of planar diagrams and should vanish as in the

supersymmetric parent. Nonperturbative planar equivalence as formulated in [3] extends

this to nonperturbative corrections in the ’t Hooft coupling but, in any case, (2.2) remains

an exponentially stronger condition than planar equivalence.

The physical interpretation of the planar equivalence condition (2.3) depends to a large

extent on the dynamical regime that we consider. For example, the implications for the

structure of the spectrum depend on the value of the ratio β/L. Let us write (2.1) in terms

of the spectrum of energy eigenvalues,

I(β) =
∑

E

(ΩB(E) − ΩF (E)) e−β E , (2.4)

with ΩB,F the boson and fermion density of states. The thermal partition function is given

by

Z (β) =
∑

E

(ΩB(E) + ΩF (E)) e−β E . (2.5)

In the large-volume limit, β/L ¿ 1, these quantities are dominated by the high-energy

asymptotics of the spectrum. In particular, for asymptotically free theories, we expect

that the free energy can be approximated by that of a plasma phase. Thus, on dimensional

grounds,

log Z (β) = −N2 f(λ) (L/β )3 + O(N) ,

up to a vacuum-energy contribution linear in β, with f(λ) a function of the ’t Hooft coupling

λ = g2N , conveniently renormalized at the scale 1/β. From this expression we infer that

the asymptotic high-energy behaviour of the density of states is given by

log ΩB,F (E) =
√

N sB,F (λ) (E L)3/4 + O(N) .

Notice that the leading term is of O(N2) for E = O(N2). Then, the prediction of pla-

nar equivalence boils down to sB(λ) = sF (λ), namely the leading O(N2) high-energy

asymptotics of the density of states is effectively supersymmetric.1 The distinction be-

tween perturbative and nonperturbative planar equivalence at this level refers mainly to

the dependence of sB,F on the ’t Hooft coupling, λ.

1This property is very similar to the so-called “misaligned supersymmetry”, studied in [13], that char-

acterizes non-supersymmetric string theories without classical tachyonic instabilities.
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Conversely, in the opposite limit L/β ¿ 1 the graded partition function I(β) is domi-

nated by low-lying states. In the classical approximation, the Hamiltonian of gauge theories

on T3 has states of vanishing potential energy, corresponding to flat connections on the

gauge sector and zero eigenvalues of the Dirac operator on the fermion sector. This implies

that there is a neat separation of scales, of order 1/L, between zero modes and the rest of

the degrees of freedom in the limit of small volume. The graded partition function may be

written as

I(β) = Trslow (−1)F e−βHeff , (2.6)

with Heff a Wilsonian effective Hamiltonian for the zero modes or “slow variables”. For

asymptotically free theories, this Hamiltonian may be estimated in a weak-coupling expan-

sion in the small running coupling g2N , defined at the scale 1/L (c.f. [10, 11]).

A characteristic behaviour of the supersymmetric index is that the effective Hamilto-

nian acting on the space of zero modes with energies much smaller than 1/L is free, i.e.

the Wilsonian effective potential induced by integrating out the non-zero modes vanishes

exactly as the result of boson/fermion cancellation. The contribution of fermionic zero

modes leads to the familiar O(N) vacuum degeneracy. In the nonsupersymmetric case, a

similar behaviour of (2.6) would require that O(N) fermionic zero modes exist and that

the effective potential is at most of order Veff = O(1/N), i.e. it would have to vanish in the

large N limit.

However, since Veff is itself part of a Wilsonian effective action, standard planar equiv-

alence applied to such effective action (computed with infrared cutoff 1/L) would only

require the weaker condition that this effective potential vanishes to leading O(N2) order

or, equivalently Veff = O(N).

Therefore, the graded partition function is not expected to measure an O(N) vacuum

degeneracy, even in the dynamical regime of small tori, where it is dominated by low-lying

states. In fact, the main result of this paper is the realization that even the standard

condition of planar equivalence for the effective potential, i.e.

Veff = O(N) (2.7)

is violated locally along the configuration space that defines the effective Wilsonian Hamil-

tonian Heff . We believe that understanding these facts in detail is important, given the

close relationship between the supersymmetric index in finite volume and the gaugino con-

densates in the standard N = 1 SYM lore [14].

In this paper we examine the zero-mode effective potentials (2.7) for particular exam-

ples of theories in which a form of planar equivalence is expected to hold. To be more pre-

cise, we consider the basic Z2 orbifold model, with gauge group SU(N)×SU(N) and a Dirac

bi-fundamental fermion. We also consider the orientifold model, an SU(N) gauge theory

with a Dirac fermion in either the symmetric or antisymmetric two-index representations.

3. Effective potentials for flat connections

We focus on gauge theories with simply-connected gauge group on the torus, namely, we

can take periodic boundary conditions for all the fields involved, generating the maximal
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possible set of zero modes. The configuration space of bosonic zero modes is the moduli

space of flat connections on T3, which in turn can be characterized by a commuting triple

of holonomies, modulo gauge transformations (c.f. [9]). If the gauge group is taken to be

a direct product of SU(N) factors, the moduli space has the same product structure, with

each factor given by direct product of Cartan tori TN−1
C for each holonomy, modulo the

Weyl group W = SN , which acts by permutations of the holonomies’ eigenvalue spectrum,2

MSU(N) =

(
TC

N−1
)3

W
.

As coordinates on M, we choose constant dimensionless gauge fields in the Cartan subal-

gebra L ~A =
∑N−1

a=1
~Ca Ha. We refer to the torus (TC

N−1)3 as the “toron valley”, defined

as the product of three copies of RN−1/2πΛ̃r, where Λ̃r is the dual of the root lattice,

i.e. we identify ~C modulo translations by 4παZ3, with α a root and Z3 a three-vector of

integers. The Weyl group acts by reflections on the hyperplanes orthogonal to the roots,

and makes M into an orbifold.

Fermionic zero modes are given by solutions of /Dψ = 0. At a generic point on M,

flatness of the gauge field implies that ψ is actually covariantly constant, i.e. invariant under

the holonomies that parametrize M. If ψ is in the adjoint representation of the gauge group,

this puts the fermionic zero modes on the Cartan subalgebra for generic points on M.

However, for either fundamental or symmetric/antisymmetric representations, fermionic

zero modes will be supported on submanifolds of M of zero measure. For this reason,

when discussing the nonsupersymmetric theories, we shall consider only the bosonic zero

modes as explicit variables and integrate out all the fermionic degrees of freedom.

Under these circumstances, the effective Lagrangian around a generic point of the

bosonic moduli space takes the form

Leff =
L

2g2
Tr

(
∂t

~C
) 2

− Veff( ~C ) , (3.1)

where the effective potential is the sum of bosonic and fermionic parts. In the one-loop

approximation and in background-field gauge it is given by

∫ ∞

−∞

dt Veff(~C ) = TrAd log
(
−D2

~C

)
−

∑

R

TrR log
(
i /D ~C

)
, (3.2)

where R stands for the fermion representations. The operator −D2 acts on scalar functions

on R×T3, after we have taken into account the contribution from gauge-field polarizations

and ghosts. The normalization convention for i /D regards fermion representations as carried

by Majorana or Weyl spinors, so that representations carried by Dirac spinors actually

involve R ⊕ R̄, contributing with an extra factor of 2 to the total potential.

Using the fact that (i /D)2 = −D2 for flat connections, we simply need to compute the

determinant of the operator −D2 in different representations. Since we work on the space

2In what follows, we focus on gauge groups with simple SU(N) factors, neglecting for example the U(1)

factors that arise in orbifold models, which would only contribute subleading effects in the large N limit.
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of constant abelian connections, the traces in (3.2) involve a sum over the relevant weight

spaces and we can write (c.f. [10, 11, 9])

Veff(~C ) =
∑

α

V
(
α · ~C

)
−

∑

R

∑

µ∈R

V
(
µ · ~C

)
, (3.3)

where α runs over the roots of SU(N), µ runs over the weights of the fermion representations

R and the dot product refers to the Cartan inner product, i.e. α · ~C ≡ ∑N−1
a=1 αa

~Ca. In this

general expression, the function V is the subtracted scalar determinant

∫ ∞

−∞

dt V (~ξ ) = Tr log

[
−∂2

t −
(
~∂ + iL−1 ~ξ

)2
]

R×T3

− Tr log
[
−∂2

]
R×T3 ,

which can be computed by standard methods (c.f. [10, 15]) with the result

V (~ξ ) =
2

π2L

∑

~n 6=0

sin2
(

1
2 ~n · ~ξ

)

(~n · ~n )2
, (3.4)

up to numerical, ~ξ-independent constants. We shall refer to (3.4) as the SU(2) poten-

tial, since it coincides with the contribution, up to a factor of 2, of the SU(2) adjoint

representation.

These expressions make it clear that the parent supersymmetric theories have vanishing

effective potential over M, since fermions are in the adjoint representation and the bosonic

and fermionic potentials cancel out one another.

3.1 General properties of the effective potential

The elementary building block of (3.3), the SU(2) po-

0 2π−2π C

V(C)

Figure 1: SU(2) bosonic po-

tential along a Cartan direction.

Conical minima are located at

C = 0 mod 2π, smooth maxima

at C = π mod 2π.

tential, has periodicity ~ξ → ~ξ + 2π~k, ~k ∈ Z3 and is

symmetric under reflections ~ξ → −~ξ. The minima of the

positive function V (~ξ ) are located at ~ξmin = 0 mod-

ulo 2πZ3, and correspond to conical singularities where

V (~ξ ) ∼ |~ξ − ~ξmin|. Maxima are smooth and sit at
~ξmax = (π, π, π) modulo 2πZ3 (c.f. figure 1).

These properties propagate to the full SU(N) poten-

tial, with due consideration of the global group-theory

structure for each contributing representation. The po-

tential induced by the pure-gauge degrees of freedom en-

joys a translational symmetry under ~C → ~C+4π~k νi with

νi any of the N weights of the defining representation. In

particular, all zeros of the adjoint potential can be obtained from ~C = 0 by the action of

this translational symmetry. The induced periodicity on the moduli space is finer than

the minimal one, imposed by the toroidal nature of the potential valleys. This periodicity

is associated to the action of the global symmetry group (ZN )3 of central conjugations,

whose characters label the non-abelian electric flux sectors [16].

– 6 –
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In general, this symmetry of central conjugations is broken by the fermionic represen-

tations down to a subgroup of order n(R)3, where n(R) is the so-called “N-ality” of the

representation. It can be defined by the number of Young tableaux, modulo N , or in the

highest-weight parametrization

µhw
R =

N−1∑

k=1

qk µk ,

with µk =
∑k

i=1 νi the fundamental weights and qk ≥ 0, the “N-ality” is given by n(R) =∑
k qkk mod N . Hence, for fermion representations with trivial center, such as the defining

“vector” representation, the translations by multiples of 4πνi do not define a symmetry of

the full effective potential.

In general, representations with triv-

2  3π

4πν

4πα

4πα

4πα

0
4πν4πα0

4πα

4πα

2π

4πν

4πν

Figure 2: The structure of the SU(3) potential

for the adjoint representation (on the left) and the

defining vector representation (on the right). The

Weyl hyperplanes are indicated by dashed lines.

We see that the effective Weyl chamber for the vec-

tor representation is bigger than the adjoint one

by a factor
√

3. The conical points (global minima

or maxima ) lie on the intersection of Weyl hy-

perplanes. For the vector representation, we also

mark by white circles the smooth critical points of

the potential.

ial N-ality will induce potentials that fit

within the frame of the bosonic poten-

tial, and partial cancellations of some

bosonic minima are possible. Represen-

tations with non-trivial N-ality will gen-

erate potentials that fit better within the

frame of the fundamental (vector) repre-

sentation. The local bosonic mimima will

generically survive as global minima, ex-

cept perhaps the one at the origin.

The contribution of a representation

R to the potential is very constrained ge-

ometrically by the action of the Weyl

group, generated by permutations of the

weights. The combination of the Weyl

reflections and the periodicity properties

of the potential single out the (N − 2)-

dimensional hyperplanes given by the lin-

ear equations

µ · ~C = 0 mod 2π Z3 .

for each weight, there is one such Weyl hyperplane passing through the origin, and all

others are parallel and shifted by integer multiples of the normal vector 2πµ/|µ|2. Weyl

hyperplanes are local minima of the bosonic potential along the transverse directions (and

local maxima of the fermionic potential). Hence, local minima (maxima) of the bosonic

(fermionic) potential are located at intersections between Weyl hyperplanes. The funda-

mental region of the Weyl reflection group is the Weyl chamber, and is enclosed by such

Weyl hyperplanes. As a result local minima (maxima) of the bosonic (fermionic) poten-

tial are located at the vertices of the Weyl chambers. For a given representation, the

induced potential shows structure up to the scale given by the size of the associated Weyl

– 7 –
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chamber,

`R =
2π

|µR|
with µR the highest weight of the representation R.

As it stands, the effective potential (3.3) is not smooth at the orbifold singularities

of M. The vertices of the Weyl chamber signal either bosonic minima or fermionic max-

ima. Locally, the behaviour of the potential at these points is conical Veff ∼ | ~C |, a result

of the appearance of extra localized light modes. Focusing on the minima, the leading

non-derivative potential away from the toron valley is given by the commutator term

Tr [Cµ, Cν ]2/g2, which induces a mass for generic excitations orthogonal to the toron valley.

Zero-point fluctuations of these modes are at the origin of the effective potential considered

above. However, near ~C = 0 (or any of the other orbifold singularities), the N2 − 1 con-

stant modes are effectively massless. Upon rescaling ~C → g2/3 ~C, we obtain a homogeneous

scaling of the effective Hamiltonian yielding a spectrum of order g2/3/L ∼ 1/LN1/3, with

wave functions localized over a region of size O(g2/3) ∼ O(1/N1/3) around the orbifold

points [10]. Away from this “stadium”, the effective potential produces a barrier that sup-

presses the wave functions exponentially at large N . In general, barriers are very efficient

in suppressing tunneling at large N , since the flat connections have a large effective mass

of order meff ∼ LN/λ at weak coupling, as can be seen from (3.1).

These dynamical considerations show that, unless the cancellation between bosonic and

fermionic potentials is accurate up to corrections of O(1/N), the low-lying wave functions

will tend to remain rather localized in the large N limit, a situation that is altogether very

different from the supersymmetric case, where zero-mode wave functions can be considered

uniformly distributed over the moduli space (in fact, constant) despite the existence of

orbifold singularities (see [17, 12] for further discussion of the subtleties involved).

4. Effective potentials and planar equivalence

At the level of the effective potentials considered in this paper, the property of planar

equivalence manifests itself in the cancellation of bosonic and fermionic contributions to

leading order in the large-N expansion. Namely, one should find Veff(~C ) = O(N) instead

of the more generic O(N2) scaling. Alternatively, one relates the given model to its su-

persymmetric parent. In many cases, this comparison is rather subtle. For example, in

orbifold models the detailed global structure of the toron valleys changes from parent to

daughter, since the Weyl groups are clearly different. Hence, the domains of definition

of Veff(~C ) differ between parent and daughter theories and a precise comparison would

involve a further refinement of the projector that appears in (2.1).

For models with the same configuration space, such as the orientifold field theory, the

main property that ensures planar equivalence is the equality, to leading O(N2) order, of

the fermion effective actions between parent and daughter, i.e.

TrAd log ( i /D ) − TrR log ( i /D ) = O(N) . (4.1)

In principle, this property may be established in a strong sense, for any sufficiently smooth

gauge connection A, provided it belongs to the configuration space of both theories. Within

– 8 –
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the weak-field expansion, the perturbative version of planar equivalence ensures (4.1) to

any finite order in the one-loop Feynman diagram expansion in the background field. To

see this, consider the one-loop diagram with n external legs, proportional to TrR
(
/A/ /∂

)n
.

It contains a group-theory factor proportional to TrR T a1 . . . T an . Reducing this trace to

a combination of symmetrized traces, we end up with terms of the form

STrR T a1 . . . T an = In(R) d a1···an + lower order products,

where In(R) denotes the Dynkin index of the representation R, and the symmetric poly-

nomial d a1···an is the symmetrized trace in the fundamental representation.

Then, the Dynkin index for the symmetric and antisymmetric representations, S±, is

given by In(S±) = 2(N ± 2n) (c.f. [18]), to be compared with In(Ad) = 2N for the adjoint

representation. The leading Dynkin index is indeed the same in the large-N limit, so that

a given diagram with an arbitrary (but fixed) number of legs yields the same contribution

in the large-N limit in the parent and daughter theories. So far this is just another way

of looking at the statement of perturbative planar equivalence. However, In(S±) has a

subleading (non-planar) term that blows-up exponentially with the number of legs of the

diagram. Hence, planar equivalence stated diagram by diagram no longer guarantees that

the full non-perturbative effective action will satisfy the planar-equivalence property (4.1).

In principle, there could be a non-commutativity between the large-N limit and the non-

linearities beyond the weak-field expansion, and this question could be a dynamical one,

i.e. depending on the particular gauge connection considered as background.

These considerations show that the behaviour of the exact one-loop potential (3.3)

under planar equivalence is a rather non-trivial issue. The purely perturbative version of

the planar equivalence is strictly related to the Taylor expansion of the potential around

the origin of moduli space ~C = 0, and the behaviour at finite distance away from the origin,

| ~C| ∼ 1, remains an open question. In the following subsections we consider in more detail

the effective potential in the two main examples of planar equivalence.

4.1 Orientifold effective potential

The orientifold model defined by a SU(N) gauge theory with a Dirac fermion in the an-

tisymmetric representation has an effective potential for the flat connections that we may

conveniently write as a superposition of the basic SU(2) potentials (3.4), following the

general structure of (3.3).

It is convenient to parametrize the weights and roots of the relevant representations

in terms of the N weights, νi, of the defining vector representation of SU(N), that satisfy

νi ·νj = (Nδij−1)/2N , so that νi+νj with i < j run over the weights of the antisymmetric

two-index representation, whereas νi − νj run over the roots of SU(N) as i, j = 1, . . . , N ,

except for the fact that in this way we count one extra vanishing root, which gives no

contribution since V (0) = 0 in our additive convention for the vacuum energy.3 The final

3The ~C-independent part of Veff vanishes to O(N2) in all the models studied in this paper.
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form of the potential is

Vori(~C) =
∑

i,j

V
(
(νi − νj) · ~C

)
− 2

∑

i<j

V
(
(νi + νj) · ~C

)
, (4.2)

with an extra term

−2
∑

i

V
(
2νi · ~C

)

to be added for the symmetric two-index representation. The first two terms are nominally

of O(N2) from the multiplicity of the index sums, whereas the last term is at most of O(N),

and thus may be ignored when discussing the property of (minimal) planar equivalence in

this model.

The first nontrivial property of the orientifold potential is the instability of the origin

of moduli space, ~C = 0. To see this, we can explore the potential along the direction of a

fundamental weight, say ~C = ν1~c, with very small ~c, so that the SU(2) potential can be

approximated by V (~ξ) ' v|~ξ| with v a positive constant.

Evaluating the potential in this direction one obtains

Vori(ν
1~c) ≈ −N |~c|

up to subleading corrections at large N . Hence, we conclude that the zero-holonomy point

at the origin of moduli space becomes severely unstable at large N .

The scale over which the bosonic and fermionic contributions vary is roughly the same,

since the size of the Weyl chamber for the two-index representations is

`S±
=

2π

|νi + νj | = 2π + O(1/N), i 6= j ,

whereas the size of the standard Weyl chamber is `Ad = 2π/|νi − νj| = 2π. On the other

hand, the alignment of the bosonic and fermionic potentials is not perfect. We can see this

by checking the height of the local conical minima,4 that are inherited from the absolute

zeros of the bosonic potential. Conical minima of the bosonic potential are determined by

the equations

(νi − νj) · ~C(0) = 0 mod 2πZ3

for all i, j, which have as the general solution the integer lattice generated by the vectors

4πνi. We can now evaluate the fermionic contribution

VF(~C(0)) = −2
∑

i<j

V
(
(νi + νj) · ~C(0)

)

at a generic zero of the bosonic contribution, given by ~C(0) = 4π
∑

i ~ni ν
i, with ~ni ∈ Z3.

Using the properties of the basic weights we have

(νi + νj) · 4π
∑

k

~nk νk = 2π(~ni + ~nj) −
4π

N

∑

k

~nk

4The conical singularities are smoothed out when considering the effects of the light non-abelian degrees

of freedom, as explained at the end of section 3.
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and, by the periodicity properties of the SU(2) potential, we can write

VF(~C(0)) ∼ −N2V

(
4π

N

∑

k

~nk

)
.

Hence, as we move around the lattice of conical minima from points with
∑

k ~nk = O(1) to

points with
∑

k ~nk = O(N), the potential scans on a band of energies ranging from O(N)

up to O(N2), with a typical spacing of O(N). As an example of a set of local minima with

O(N2) negative energy, we can consider points in the lattice satisfying
∑

k ~nk = (N/4, 0, 0)

at large values of N such that N/4 is an integer. On these points, the fermionic contribution

is maximal and given by

VF = −N2 V (π) + O(N) .

In an analogous fashion, the conical maxima of the fermionic potential should be lifted up

by the smooth portions of the bosonic potential giving us an intricate landscape of very

narrow valleys and peaks on the O(N) scale of relative heights, with some walls rising up

to O(N2) energies. The conclusion is that nonlinear effects at finite distance away from

the origin of moduli space tend to spoil the property of planar equivalence, at least when

looking at the potentials with high enough resolution.

In fact, it turns out that planar equivalence is still maintained on the average, since

the integral of (4.2) over the toron valley is only of O(N). To see this, we can expand the

flat connections in the basis of the simple roots αi
s = νi − νi+1, i = 1, . . . , N − 1, i.e. we

write

~C =
N−1∑

l=1

~cl αl
s

and the orientifold potential takes the form

Vori(~C ) =
∑

i,j

[
V

(
1
2(~ci − ~ci−1 − ~cj + ~cj−1)

)
− V

(
1
2(~ci − ~ci−1 + ~cj − ~cj−1)

)]
+ O(N) .

(4.3)

In this expression, we have neglected terms of O(N) coming from restrictions on the range

of the indices. When averaging over the toron valley, the coordinates ~cj become dummy

integration variables, and an appropriate change of variables shows that the bosonic and

fermionic terms cancel out upon integration.

We can use similar arguments to show that the average of the squared potential (Vori)
2

is at most of O(N3). This shows that the average cancellation of O(N2) terms in (4.3)

does not come from large “plateaus” of O(N2) energy occupying different O(1) fractions of

moduli-space’s volume. If that would have been the case, all these smooth regions would

contribute to (Veff)2 as positive plateaus of O(N4) energy, producing an average squared

potential of O(N4).

The vanishing of the leading O(N4) terms in the averaged squared potential suggests

that the valleys and peaks of the orientifold potential are localized over small volumes of

the moduli space in the large N limit. Still, the wave functions will show strong localization

properties and our analysis sheds no new light on the important question of chiral symmetry
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breaking in these models (non-trivial expectation values of fermion bilinears in the infinite

volume limit).

4.2 Orbifold effective potential

For the basic orbifold model with SU(N) × SU(N) group and a bi-fundamental Dirac

fermion we have a potential defined over the direct product of toron valleys parametrized

by ~C1 and ~C2 flat connections. It has the form

Vorb(~C1, ~C2) =
∑

i,j

V
(
(νi − νj ) · ~C1

)
+

∑

i,j

V
(
(νi − νj ) · ~C2

)
−2

∑

i,j

V
(
νi · ~C1 − νj · ~C2

)
.

(4.4)

The properties of this potential are similar to those

−2π

2π

0

C2

−2π 0 2πC1

Figure 3: Section of the poten-

tial for the SU(2)×SU(2) orbifold

field theory. The diagonal line

is the region where bosonic and

fermionic potentials cancel one an-

other. Global minima of negative

energy lie at the points marked

by triangles pointing downwards.

Global maxima of positive en-

ergy are also indicated by triangles

pointing upwards.

of the orientifold model studied in the previous subsec-

tion. Conical minima are again distributed in an intricate

landscape with energy spacings of O(N) but reaching en-

ergies of O(N2). Conical zeros of the bosonic potentials

are given by flat connections of the form

~C
(0)
1,2 = 4π

∑

l

~n1,2,l ν
l .

At these points, the fermionic contribution has the value

VF(~C
(0)
1 , ~C

(0)
2 ) = −N2 V

(
2π

N

(∑
~n2 −

∑
~n1

))

and, as before, we have negative minima with energies

ranging from O(N) to O(N2) as
∑

~n2 − ∑
~n1 ranges

from O(1) to O(N).

The global picture is very similar to the case of the

orientifold model, including the rough statistical prop-

erties of the potential. The same analysis used before

also shows that the orbifold potential averages to O(N)

energy while the squared potential averages to O(N3).

The similarity between the orbifold and the orientifold potential is even quantitative

along the “antidiagonal” of the moduli space, i.e. the hypersurface defined by ~C+ = 0, where
~C± = 1

2(~C1± ~C2 ) are the eigenvalues of the orbifold Z2 action over the moduli coordinates.

Along this hypersurface of Z2-odd connections the orbifold potential is identical to the

orientifold one, up to O(N) corrections,

Vorb(0, ~C−) = 2Vori(~C−) + O(N) .

Notice that this argument also implies that the origin of moduli space is unstable along

the antidiagonal, in view of the similar behaviour of the orientifold potential studied in

the previous section. However, there are many other unstable directions, such as ~C1 = 0,
~C2 = ν1~c, for instance.
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The orbifold potential also features negative-energy minima with O(N2) energy that

are not inherited from down-shifting of the bosonic conical zeros. In order to exhibit these

special minima, let us focus on one of the “outer rims” of the moduli space, ~C2 = 0,
~C1 = ~C, and points of the form

~Cε =

(
2π

N−1∑

l=1

εl ν
l, 0, 0

)

where εl = ±1, with O(N/2) terms of each sign. The fermionic potential at these points is

VF(~Cε) = −2N
∑

i

V (νi · ~Cε ) ∼ −2N
∑

i

V (εiπ) ∼ −2N2 V (π) ,

whereas the bosonic contribution is at most of O(N). To see this, notice that

2π

N−1∑

l=1

εl ν
l · (νi − νj) = π(εi − εj)

if i, j = 1, . . . , N − 1. All these terms are of the form V (±2π) or V (0) and thus vanish.

The remaining N − 1 terms have argument

2π
N−1∑

l=1

εl ν
l · (νi − νN ) = π εi

and contribute
∑

i V (±π) ∼ N V (π) to the bosonic potential. We conclude that these

minima come from the superposition of N2 inverted maxima of the SU(2) potential.

A peculiar feature of the orbifold potential is its exact cancellation along the diagonal
~C1 = ~C2. This is the closest we come to the complete cancellation of the potential over

the moduli space, the hallmark of the supersymmetric models. In this case, however, local

minima of the potential lie outside the diagonal on the “twisted sector” of the moduli

space. Although in finite volume one cannot strictly talk about spontaneous breaking of

the orbifold Z2 symmetry, minimum energy wave functions are localized near regions with

non-zero values of the “twisted fields” ~C1 − ~C2. In this respect, the status of this result is

similar to that in [7], this time in the regime of full spatial compactification.

5. Discussion

In this paper we have examined the finite-volume dynamics of the basic examples of orbifold

and orientifold models that exhibit the property of planar equivalence. We have applied

standard methods based on the Born-Oppenheimer approximation to the dynamics of

asymptotically-free gauge theories on small three-tori. In particular, we have analyzed the

large-N properties of one-loop effective potentials over the moduli space of flat connections.

This type of analysis leads to the known properties and microscopic determinations of the

Witten index in the case of supersymmetric theories. Since planar equivalence consists

precisely in a large-N “inheritance” of certain supersymmetric properties between parent

and daughter theories, it becomes an interesting question whether a “planar” version of a

supersymmetric index could be defined for these theories.
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Examining the graded partition function as a natural candidate for such a “planar

index”, we have argued that the constraints imposed by perturbative planar equivalence

are not strong enough to justify a useful notion of planar index, at least in the sense that it

should be determined by O(N) fermionic zero modes for a rank N gauge theory. Instead,

we find that effective potentials over the moduli space of flat connections remain generically

too large as N → ∞ to allow the kind of zero-mode dynamics that is characteristic of su-

persymmetric theories. In particular, potential barriers of O(N2) height remain at special

points in the moduli space, resulting in strong violations of the much weaker property of

minimal planar equivalence (cancellation of all O(N2) features). In general, planar equiva-

lence is only maintained in a statistical sense, at the level of averages over the moduli space.

The associated wave functions show exponential localization around local minima,

unlike the constant wave functions that ensure an index determined by fermionic zero modes

in the supersymmetric case. These large potential barriers also imply that semiclassically

calculable effects on these potentials will be typically suppressed exponentially in the large-

N limit. Identifying a semiclassical tunneling effect of O(1) in the large-N scaling, but

non-perturbative suppression in the ’t Hooft coupling, would require potential barriers of

order ∆Veff ∼ 1/LN , much smaller than those found in our examples.

The orbifold model admits a very strong projection under which it behaves exactly

like a supersymmetric theory. This is the diagonal projection, onto wave functions that are

supported only over the diagonal of the moduli space ~C1 = ~C2. This projection, if exercised

over the complete Hilbert space of the orbifold theory, truncates it to a supersymmetric

SU(N) gauge theory. Notice that the parent theory in this case is SU(2N), so that we are

considering a much stronger projection here. What we find is that, to one-loop accuracy

but exactly over the moduli space of flat connections, this projection can be done only

over the zero-modes with identical result. Although this behaviour of the orbifold model

is interesting, it is fair to say that the required diagonal projection is completely ad hoc

and is not supported by the dynamics of the system, which tends to favour wave functions

supported on the “twisted” regions of the moduli space.

It would be interesting to complement our analysis with the study of more general

boundary conditions, allowing the presence of magnetic fluxes through the torus. In the

case of the supersymmetric theories, this introduces interesting refinements of the index

that probe non-trivial properties such as confinement and chiral symmetry breaking. In

the context of the models considered in this paper, the study of such twisted sectors could

reveal a better large-N vacuum behaviour in the orbifold case, and perhaps a hint of the

fermion condensates that should develop in the infinite-volume theory in the case of the

orientifold model. Work in this direction can be found in [19].
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We would like to thank A. Armoni and C. Gómez for enlightening discussions. The work of

C.H. was partially supported by an FPU grant from MEC-Spain. The work of J.L.F.B. was

partially supported by MCyT and FEDER under grant BFM2002-03881 and the European

RTN network MRTN-CT-2004-005104.

– 14 –



J
H
E
P
0
1
(
2
0
0
6
)
1
1
4

References

[1] S. Kachru and E. Silverstein, 4d conformal theories and strings on orbifolds, Phys. Rev. Lett.

80 (1998) 4855 [hep-th/9802183];

A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four dimensions,

Nucl. Phys. B 533 (1998) 199 [hep-th/9803015];

M. Bershadsky, Z. Kakushadze and C. Vafa, String expansion as large N expansion of gauge

theories, Nucl. Phys. B 523 (1998) 59 hep-th/9803076;

Z. Kakushadze, Gauge theories from orientifolds and large-N limit, Nucl. Phys. B 529

(1998) 157 [hep-th/9803214]; On large-N gauge theories from orientifolds, Phys. Rev. D 58

(1998) 106003 [hep-th/9804184];

M. Bershadsky and A. Johansen, Large-N limit of orbifold field theories, Nucl. Phys. B 536

(1998) 141 [hep-th/9803249];

M. Schmaltz, Duality of non-supersymmetric large-N gauge theories, Phys. Rev. D 59 (1999)

105018 [hep-th/9805218].

[2] A. Armoni, M. Shifman and G. Veneziano, Exact results in non-supersymmetric large-N

orientifold field theories, Nucl. Phys. B 667 (2003) 170 [hep-th/0302163]; From

super–Yang-Mills theory to QCD: planar equivalence and its implications, hep-th/0403071;

Exact results in a non-supersymmetric gauge theory, Fortschr. Phys. 52 (2004) 453;

F. Sannino and M. Shifman, Effective Lagrangians for orientifold theories, Phys. Rev. D 69

(2004) 125004 [hep-th/0309252];

A. Armoni, A. Gorsky and M. Shifman, An exact relation for N = 1 orientifold field theories

with arbitrary superpotential, Nucl. Phys. B 702 (2004) 37 [hep-th/0404247];

P. Di Vecchia, A. Liccardo, R. Marotta and F. Pezzella, The gauge/gravity correspondence

for non-supersymmetric theories, Fortschr. Phys. 53 (2005) 450 [hep-th/0412234];

F. Sannino, Higher representations: confinement and large-N , Phys. Rev. D 72 (2005)

125006 [hep-th/0507251].

[3] M.J. Strassler, On methods for extracting exact non-perturbative results in

non-supersymmetric gauge theories, hep-th/0104032.

[4] A. Armoni, M. Shifman and G. Veneziano, SUSY relics in one-flavor QCD from a new 1/N

expansion, Phys. Rev. Lett. 91 (2003) 191601 [hep-th/0307097]; QCD quark condensate

from SUSY and the orientifold large-N expansion, Phys. Lett. B 579 (2004) 384

[hep-th/0309013].

[5] A. Gorsky and M. Shifman, Testing nonperturbative orbifold conjecture, Phys. Rev. D 67

(2003) 022003 [hep-th/0208073];

R. Dijkgraaf, A. Neitzke and C. Vafa, Large-N strong coupling dynamics in

non-supersymmetric orbifold field theories, hep-th/0211194;

J. Erlich and A. Naqvi, Nonperturbative tests of the parent/orbifold correspondence in

supersymmetric gauge theories, JHEP 12 (2002) 047 [hep-th/9808026];

P. Kovtun, M. Unsal and L.G. Yaffe, Non-perturbative equivalences among large-Nc gauge

theories with adjoint and bifundamental matter fields, JHEP 12 (2003) 034

[hep-th/0311098]; Necessary and sufficient conditions for non-perturbative equivalences of

large-Nc orbifold gauge theories, JHEP 07 (2005) 008 [hep-th/0411177]; Can large-Nc

equivalence between supersymmetric Yang-Mills theory and its orbifold projections be valid?,

Phys. Rev. D 72 (2005) 105006 [hep-th/0505075];

– 15 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4855
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4855
http://xxx.lanl.gov/abs/hep-th/9802183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB533%2C199
http://xxx.lanl.gov/abs/hep-th/9803015
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB523%2C59
http://xxx.lanl.gov/abs/hep-th/9803076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB529%2C157
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB529%2C157
http://xxx.lanl.gov/abs/hep-th/9803214
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C106003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C106003
http://xxx.lanl.gov/abs/hep-th/9804184
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB536%2C141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB536%2C141
http://xxx.lanl.gov/abs/hep-th/9803249
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C105018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD59%2C105018
http://xxx.lanl.gov/abs/hep-th/9805218
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB667%2C170
http://xxx.lanl.gov/abs/hep-th/0302163
http://xxx.lanl.gov/abs/hep-th/0403071
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C52%2C453
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C125004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C125004
http://xxx.lanl.gov/abs/hep-th/0309252
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB702%2C37
http://xxx.lanl.gov/abs/hep-th/0404247
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=FPYKA%2C53%2C450
http://xxx.lanl.gov/abs/hep-th/0412234
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C125006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C125006
http://xxx.lanl.gov/abs/hep-th/0507251
http://xxx.lanl.gov/abs/hep-th/0104032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C91%2C191601
http://xxx.lanl.gov/abs/hep-th/0307097
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB579%2C384
http://xxx.lanl.gov/abs/hep-th/0309013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C022003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C022003
http://xxx.lanl.gov/abs/hep-th/0208073
http://xxx.lanl.gov/abs/hep-th/0211194
http://jhep.sissa.it/stdsearch?paper=12%282002%29047
http://xxx.lanl.gov/abs/hep-th/9808026
http://jhep.sissa.it/stdsearch?paper=12%282003%29034
http://xxx.lanl.gov/abs/hep-th/0311098
http://jhep.sissa.it/stdsearch?paper=07%282005%29008
http://xxx.lanl.gov/abs/hep-th/0411177
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C105006
http://xxx.lanl.gov/abs/hep-th/0505075


J
H
E
P
0
1
(
2
0
0
6
)
1
1
4

A. Armoni, A. Gorsky and M. Shifman, Spontaneous Z2 symmetry breaking in the orbifold

daughter of N = 1 super–Yang-Mills theory, fractional domain walls and vacuum structure,

Phys. Rev. D 72 (2005) 105001 [hep-th/0505022].

[6] P. Kovtun, M. Unsal and L.G. Yaffe, Can large-Nc equivalence between supersymmetric

Yang-Mills theory and its orbifold projections be valid?, Phys. Rev. D 72 (2005) 105006

[hep-th/0505075].

[7] D. Tong, Comments on condensates in non-supersymmetric orbifold field theories, JHEP 03

(2003) 022 [hep-th/0212235].

[8] A. Armoni, M. Shifman and G. Veneziano, Refining the proof of planar equivalence, Phys.

Rev. D 71 (2005) 045015 [hep-th/0412203].

[9] P. van Baal, Gauge theory in a finite volume, Acta Phys. Polon. B20 (1989) 295

[hep-ph/0008206];
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[10] M. Lüscher, Some analytic results concerning the mass spectrum of Yang-Mills gauge theories

on a torus, Nucl. Phys. B 219 (1983) 233.
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